Вероятность – дирижер движенияСтраница 2
Можно убедиться в том, что результат подсчета не зависит от того, как ориентирована сетка, наложенная на снимок, поскольку в танце броуновской частицы (так же, как в ошибках стрелка) все направления отклонения равновероятны.
Остается построить график: по горизонтальной оси отложим величины отклонения, а по вертикали – число точек.
Полученная кривая ничем не отличается от гауссовой кривой, на которую ложатся отклонения от среднего роста призывников, отклонения от средней оценки качества фильма «Великолепная семерка».
Еще раз повторим: когда речь идет о поведении случайной величины, математика не нуждается в том, чтобы мы ей сказали, чем интересуемся: физикой, биологией, эстетикой или игрой в карты.
Итак, Эйнштейн получил гауссову кривую для вероятности найти частичку на том или ином расстоянии от начального положения. Центр кривой лежит в исходной точке, то есть вероятнее всего найти частичку там, где она была. Если построить гауссовы кривые для разных промежутков времени, прошедших с начала наблюдения, то мы увидим, что с возрастанием промежутка времени между последовательными снимками положения броуновской частицы кривые будут все более расплывчатыми: через тысячу секунд частичку можно найти почти где угодно. Однако для времени порядка одной секунды кривая будет достаточно узкой.
Главным количественным результатом теории является полученная Эйнштейном формула полуширины кривой. Для данного промежутка времени она однозначно связана с температурой, коэффициентом вязкости и числом Авогадро. (Число Авогадро – это обратная величина массы атома водорода, которая равняется 1,6·10-24 грамма. Число Авогадро, равное 6·1023, имеет, очевидно, смысл числа атомов водорода в одном грамме.) Вид кривой (а значит, и ее полуширину) нам дает опыт; коэффициент вязкости всегда легко измерить; температура опыта известна. Таким образом возникает возможность определить число Авогадро. Если проделать опыты для разных жидкостей, разных температур, разных частиц и показать, что всегда получается одно и то же число, то, конечно, не останется ни одного скептика, который бы упрямо твердил: «Не верю в молекулы».
Нокаутировал скептиков Жан Перрен. Произошло это в 1909 году. Семнадцать лет спустя (большой перерыв, наверное, связан с войной) Перрен получил за эти замечательные исследования высшую награду ученого – Нобелевскую премию.
Прежде чем перейти к подробному описанию экспериментов Перрена, я хочу закончить рассказ об этом частном вопросе забавной деталью: Эйнштейн не знал о существовании броуновского движения. Обдумывая молекулярно-кинетические представления, он сообразил, что взвешенная в жидкости частичка должна быть индикатором теплового движения молекул.
Другое по теме
Задачник и обучающее множество
Эта глава посвящена одному из наиболее важных
и обделенных вниманием компонентов нейрокомпьютера — задачнику. Важность этого
компонента определяется тем, что при обучении сетей всех видов с использованием
любых алгоритмов обуче ...