Случайности, складывающиеся в законыСтраница 1
Кривая статистического распределения, построенная на основе большого числа измерений, испытаний или опросов, передает сущность событий и является их законом.
Пожалуй, первый вопрос, который заинтересует исследователя, – это стабильность кривой распределения. Действительно, если я знаю, что явление меняется медленно, то могу использовать сегодняшнюю кривую для предсказаний завтрашних событий.
В то же время сам факт систематического смещения кривых распределения весьма многозначителен и свидетельствует о каких-то важных переменах. Допустим, смещается кривая распределения солнечных дней, построенная по данным ряда десятилетий, – значит, происходят изменения в геофизических факторах, определяющих погоду; в изменениях кривой распределения среднего возраста жизни заложена информация о борьбе с болезнями, и т.д.
Напротив, если обнаруживается исключительное постоянство кривой распределения, например рождения мальчиков и девочек, то это значит, что отношение младенцев обоего пола есть генетическое свойство, глубоко запрятанное в живой клетке и не поддающееся влиянию внешней среды.
Покажем, какие богатые выводы можно сделать из постоянства статистических данных.
Во Франции в течение долгого времени число ежегодно рождавшихся мальчиков относилось к числу девочек как 22:21. Иными словами, нормальная кривая для этого отношения, построенная по месяцам за много лет, имеет максимум при 22:21. Просматривая записи рождений мальчиков и девочек в Париже (собранные за 39 лет), Лаплас нашел, что максимум кривой лежит при отношении 26:25. (26:25 < 22:21). Используя теорию нормальной кривой, можно убедиться, что это отклонение – различие в дробях – не может быть случайным. А если так, то оно должно иметь реальное объяснение. «Когда я стал размышлять об этом, – пишет Лаплас, – то мне показалось, что замеченная разница зависит от того, что родители из деревни и провинции оставляют при себе мальчиков (мужчина в хозяйстве – более ценная рабочая сила), а в приют для подкидышей отправляют девочек». Он действительно изучил списки приютов и убедился в справедливости своего предположения.
Встречается множество случаев, когда нет преимуществ у отклонений по кривой «вправо» или «влево». А если эти отклонения являются суммарным эффектом большого числа случайностей, то распределение будет гауссовым. (Математики могут доказать справедливость этого утверждения достаточно строго.)
Если же мы ждали симметричной кривой, а получили «хвост» в одну сторону и даже в стороне от колокола наметился еще один холмик поменьше, то над этим фактом стоит задуматься: вероятно, исследованию подвергалась неоднородная группа явлений. Как это может быть? Например, речь идет об измерениях роста жителей какого-нибудь города, в котором живут представители двух рас. Пусть девяносто процентов жителей относится к высокорослой расе, а десять процентов – к низкорослой. В этом случае результаты измерений роста не создадут симметричную гауссову кривую: сбоку от среднего роста может наметиться добавочный горб кривой, во всяком случае, кривая распределения будет иметь разные хвосты влево и вправо.
Выводы статистики приобретают ценность тем большую, чем обширнее материал, на основе которого построена гауссова или иная статистическая кривая.
Имея перед глазами кривую статистического распределения или статистические таблицы, мы можем делать предсказания двух типов: уверенные – детерминистские, если речь идет о средних значениях, и вероятностные – если речь идет об индивидуальном событии. Правда, обычно вероятностные предсказания не распространяются на конкретное лицо. Скажем, если известно, что средний процент брака в цехе равен 1,5 процента, то есть смысл говорить о вероятности, что 15 деталей из тысячи, изготовленных слесарем Ивановым, попадут в ящик для стружки лишь в том случае, если об Иванове ничего не известно.
Другое по теме
9. Загадочные династии-дубликаты внутри «Учебника
Скалигера-Петавиуса»
Мы составили списки всех правителей на
интервале от 4000 г. до н. э. до 1800 г. н. э. для Европы,
Азии, Египта. Использовались хронологические таблицы Ж. Блера [90] и
другие. Детали см. в [нх-1].
К это ...