11. Лошадиное доказательство
Теорема:
Все лошади одного цвета.
Доказательство.
Докажем утверждение теоремы по индукции.
При n = 1, то есть для множества, состоящего из одной лошади, утверждение, очевидно, выполнено.
Пусть утверждение теоремы верно при n = k . Докажем, что оно верно и при n = k + 1. Для этого рассмотрим произвольное множество из k + 1 лошадей. Если убрать из него одну лошадь, то их останется k . По предположению индукции все они одного цвета. Теперь вернем на место убранную лошадь и заберем какую-либо другую. Опять-таки по предположению индукции и эти k оставшихся лошадей одного цвета. Но тогда и все k + 1 лошадей будут одного цвета.
Отсюда, согласно принципу математической индукции, все лошади одного цвета. Теорема доказана.
Другое по теме
Предисловие
Февраль 1993 г. Проблема фальшивых авизо в Центральном Банке
России успешно решена. С 1 декабря 1992 года введена система защиты телеграфных
авизо, использующая специализированный калькулятор «Электроника – МК–85 С».
Калькулято ...