11. Лошадиное доказательство
Теорема:
Все лошади одного цвета.
Доказательство.
Докажем утверждение теоремы по индукции.
При n = 1, то есть для множества, состоящего из одной лошади, утверждение, очевидно, выполнено.
Пусть утверждение теоремы верно при n = k . Докажем, что оно верно и при n = k + 1. Для этого рассмотрим произвольное множество из k + 1 лошадей. Если убрать из него одну лошадь, то их останется k . По предположению индукции все они одного цвета. Теперь вернем на место убранную лошадь и заберем какую-либо другую. Опять-таки по предположению индукции и эти k оставшихся лошадей одного цвета. Но тогда и все k + 1 лошадей будут одного цвета.
Отсюда, согласно принципу математической индукции, все лошади одного цвета. Теорема доказана.
Другое по теме
Введение
Кто бы ни взялся писать книгу, посвященную столь обширной
области знаний, как наука о прочности материалов, он всегда будет чувствовать,
что специалисты найдут в такой книге много ошибок, упрощений и просто
невежества. Такая ...