Приложение 1. Доказательство теоремы Пифагора
Цель доказательства — убедиться в том, что теорема Пифагора верна для всех прямоугольных треугольников. Треугольник, изображенный на рисунке слева, может быть любым прямоугольным треугольником, так как длины его сторон не указаны, а обозначены буквами x, y и z . Справа из четырех одинаковых прямоугольных треугольников и наклоненного квадрата составлен квадрат больших размеров. Площадь большего квадрата — ключ к доказательству.
Площадь большого квадрата можно вычислить двумя способами.
1-й способ. Измеряем площадь большого квадрата как единой фигуры. Длина каждой стороны равна x +y . Следовательно, площадь большого квадрата равна (x +y )2.
2-й способ. Измеряем площадь каждого элемента большого квадрата. Площадь каждого треугольника равна xy /2. Площадь наклонного квадрата равна z 2. Следовательно, площадь большого квадрата равна 4 × (площадь каждого треугольника) + (площадь наклонного квадрата) = 4·xy /2 + z 2. 1-й и 2-й способы приводят к двум различным выражениям. Оба выражения должны быть равны, так как они представляют различные записи одной и той же площади. Следовательно,
(x + y)2 = 4·xy/2 + z2
.
Раскроем скобки и упростим полученные выражения:
x2 + 2xy + y2 = 2xy + z2
.
Члены 2xy , стоящие в левой и правой частях равенства, взаимно уничтожаются, и мы получаем
x2 + y2 = z2
.
Это и есть теорема Пифагора!
Приведенное доказательство остается в силе для любых прямоугольных треугольников. Длины сторон треугольника в нашем доказательстве обозначены буквами x, y и z , которые могут быть длинами сторон любого прямоугольного треугольника.
Другое по теме
Математические анекдоты
Это лишний раз подтверждает истину, что половина людей не
знает, как живут остальные три четверти.
Пелам Г. Вудхаус
«Фамильная честь Вустеров» ...