Растяжение и сжатие в конструкцияхСтраница 1
В течение многих веков инженеры и архитекторы старались по возможности не нагружать материал растяжением. И это делалось не столько потому, что не было достаточно прочных на разрыв материалов (древесина, например, в этом отношении прекрасный материал), сколько из-за того, что очень трудно сделать достаточно прочное на разрыв соединение. (Большинство из нас интуитивно чувствует, что сжатая конструкция безопаснее растянутой; например, нам кажется, что кирпичная стена безопаснее подвесной канатной дороги.) Но когда все-таки приходилось соединять детали, работающие на растяжение, например на кораблях, места стыков всегда были наиболее уязвимым местом конструкции. Теперь мы научились делать надежные стыки с помощью болтов, заклепок, клея и сварки, и уже нет особых оснований не доверять таким конструкциям.
Однако в древности проблема соединений в сжатых конструкциях решалась намного проще, чем в растянутых. В самом простом случае это была укладка камней или кирпичей один к другому без применения раствора, и такое сооружение не рушилось. Эта работа требует навыка, но он не многим сложнее того, который приобретают дети, складывая картинки из кубиков. Однако с развитием архитектуры росла и высота стен, появилась необходимость надежнее связывать кирпичи и камни между собой. Иначе стены с грохотом превращались в груды камня: не связанные между собой камни расползались под весом верхней части кладки.
До наших дней сохранились великолепные образцы соединений в античных постройках. Правда, не ясно, насколько необходима была та тщательность, с которой выполнены большие каменные блоки этих сооружений. Вероятно, отчасти она определялась соображениями престижа. Но как бы то ни было, многие из древних построек поражают наше воображение.
Однако какой высокой и впечатляющей ни была бы стена, технически это не очень мудреная конструкция; ее создатель должен был думать лишь о напряжениях, действующих в одном направлении, по вертикали. Правда, перекрытия, двери, окна всегда вносят дополнительные трудности. А как только мы начинаем рисовать в своем воображении системы напряжений в двух и трех направлениях, перед нами открываются колоссальные возможности. Примером может служить арка. Самая простая арка (рис. 6) работает на сжатие одновременно в двух направлениях, хотя на первый взгляд это кажется невозможным. Кирпичной аркой можно без особых ухищрений перекрыть пролет длиной около 50 м (чаще встречаются пролеты в 25–50 м). Это намного больше того, чего удается добиться с помощью любого простого балочного перекрытия. Арки очень долговечны, и до наших дней в отличном состоянии сохранилось много древнеримских арок, с их помощью, например, перебрасывали водопроводы через овраги.
Рис. 6. Арка, представляющая собой конструкцию, работающую на сжатие в двух направлениях
Формирование представлений о сложном напряженном состоянии стимулировало громадный скачок в развитии не только архитектуры, но и техники. Как только была принята концепция двумерной арки, а вслед за этим сделан следующий логический шаг - к трехмерному куполу, - архитектура стала творить чудеса. Центральная часть собора св. Софии, построенного в Константинополе около 530 года при императоре Юстиниане, представляет собой огромный купол, диаметр которого достигает 33 м. Для легкости он сложен из пемзы и покоится на громадных арках, которые в свою очередь опираются на вспомогательные полукупола (рис. 7). Размеры свободного от каких-либо колонн пространства площадью более чем 60x30 и высотой около 80 м были, вероятно, непревзойденными вплоть до постройки современных вокзалов, крыши которых держатся на металлических стропилах.
Другое по теме
«Думаю, мне следует остановиться»
Архимеда будут помнить, когда Эсхила забудут, потому что
языки умирают, но не математические идеи. Возможно, бессмертие — глупое слово, но, по всей видимости, математик
имеет наилучший шанс на бессмертие, что бы оно ни означало ...