Коэффициент Пуассона, или как работают наши артерииСтраница 3
При одновременном действии напряжений s1
и s2
суммарная деформация в направлении действия s1
будет e1 = (s1 - νs2 )/E
, а суммарная деформация в направлении действия s2
будет e2 = (s2 - νs1 )/E
.
Отсюда, используя результаты, приведенные в гл. 5, с учетом коэффициента Пуассона получаем, что продольная деформация стенок трубы, находящейся под внутренним давлением и сделанной из материала, подчиняющегося закону Гука, будет e2 = (rp/2tE )(1 - 2ν), где r
- радиус, р
- давление, t
- толщина стенок.
В результате увеличение длины трубы оказывается значительно меньшим, чем можно было бы ожидать; для гуковского же материала с коэффициентом Пуассоны, равным 1/2, продольные перемещения вообще отсутствуют. В действительности, как говорилось выше, материал стенок артерий не подчиняется закону Гука, в то же время коэффициент Пуассона для него, вероятно, больше 1/2. Возможно, эти два фактора взаимно компенсируются, поскольку соответствующие удлинения, фактически наблюдаемые в эксперименте, очень малы. Несомненно, тот факт, что артерии постоянно находятся в организме в натянутом состоянии, свидетельствует о мерах предосторожности, принятых Природой против любых возможных остаточных удлинений кровеносных сосудов.
Эффекты, связанные с коэффициентом Пуассона, по-видимому, играют важную роль в поведении тканей животных; но они важны и в технике, о чем свидетельствуют все новые факты, возникающие, как правило, неожиданно и в самых разных сочетаниях.
Возможно, следует также добавить, что, в то время как аорта и главные артерии расширяются и сокращаются упругим образом в такт с биением сердца, с артериями меньшего размера дело обстоит несколько иначе. Стенки этих артерий соединены с мышечной тканью, которая может увеличивать их эффективную жесткость и таким образом, ограничивая диаметр этих артерий, влиять на количество крови, подводимое к каждому из участков тела. Таким путем регулируется кровоснабжение тела.
Другое по теме
«Думаю, мне следует остановиться»
Архимеда будут помнить, когда Эсхила забудут, потому что
языки умирают, но не математические идеи. Возможно, бессмертие — глупое слово, но, по всей видимости, математик
имеет наилучший шанс на бессмертие, что бы оно ни означало ...